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ABSTRACT 

GATED SINGLE ASSIGNMENT FORM PARTNERED WITH 

VALUE-BASED STATISTICAL FAULT LOCALIZATION FOR 

NUMERICAL JAVA PROGRAMS 

Oliver Traben 

In recent years, new value-based statistical fault localization methodologies have 

been introduced that utilize causal inference techniques to better estimate where 

faults occur in a program. These methods (1) convert numerical Java programs 

into equivalent numerical Java programs in an inspired version of Gated Single As-

signment (GSA) form, they (2) create causal maps that contain causal relationships 

between all of the GSA variables in the translated program, and (3) they use these 

causal relationships to adjust for confounding bias during the fault localization 

calculations. In this thesis, a new source-to-source compiler is introduced, and it 

converts numerical Java programs into true GSA form (not an "inspired" version 

like the previous studies). This new tool is tested on a set of numerical Java libraries 

and compared with the previous studies, and it is found that true GSA form causes 

a signifcant increase in fault localization correctness. 

viii 



1 Introduction 

1 Introduction 

1.1 Motivation 

In the modern day, software is as important as it has ever been. Software has been 

adopted by nearly every aspect of modern society, which in turn has caused soft-

ware to become increasingly complex and crucial to remain reliable. To ensure 

reliability within code, fault localization is used, which is the act of identifying the 

location of a defect or bug in a software system [22]. However, while fault local-

ization is incredibly important to the software development process, it is often 

tedious and costly, especially as the size and complexity of the given software sys-

tem increases. In some modern day software systems it may even be infeasible 

to manually locate software faults [22]. Thus, the software development feld is in 

need of computational techniques of fault localization that involve minimal man-

ual intervention. This type of fault localization has been labeled as automated 

software fault localization [13]. 

Within automated software fault localization, statistical fault localization (or 

spectrum-based fault localization) is often used as a way to deploy association 

strategies [13]. Using these statistical methods, execution profles (or spectra) are 

collected from code, which display whether or not a given program statement or 
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variable correspond to the occurrence of a program fault [13]. These execution 

profles can then be used as a way to produce measures, called suspiciousness 

scores, which are used to quantify the likelihood that a given program statement 

or variable value will result in a software fault [13]. Once suspiciousness scores are 

collected for all program elements within a fle of code, the scores can be compared 

and ranked, so then the software developers can examine the program elements 

with the highest ranks of suspicion frst [13]; which will likely lead to a more ef-

cient debugging process. 

In this thesis, an existing statistical fault localization method called Counter-

Fault will be used, which also utilizes causal inference techniques to attempt to 

eliminate confounding bias in the suspiciousness scores. CounterFault will be 

used alongside a newly developed source-to-source Java compiler that translates 

numerical Java programs to identical numerical Java programs in Gated Single As-

signment (GSA) form. GSA form—in simple terms—is when all variables have at 

most one assignment statement. This allows CounterFault to excel, because each 

variable can be tracked to one statement, which helps CounterFault calculate the 

suspiciousness scores for each variable. 

Although CounterFault has already been used in studies in the past, previous 

studies did not use a genuine GSA form. Rather, "inspired" versions of GSA form 

were used, which were claimed to be computationally equivalent to actual GSA 

form. These "inspired" GSA form tools led to the motivation for this thesis where 

a source-to-source Java compiler that utilizes a true form of GSA will be imple-

mented. By utilizing this new tool with CounterFault and comparing it to previous 
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studies, the impact of true GSA form can be analyzed as either more, less, or equally 

efective. 

1.2 Related Work 

In [6], Ding developed a tool that was intensely similar to the tool developed for 

this thesis. The tool converted programs into GSA form, then causal inference tech-

niques were partnered with statistical fault localization to produce the suspicious-

ness scores for all of the variables within the program of interest [6]. However, the 

tool difered in that it was developed for numerical Python programs rather than 

numerical Java programs. Within the empirical study of Ding’s research, the tool 

was able to correctly rank the faulty variable highly in most cases; but the tool was 

noticed to behave poorly when the faulty variable was faulty a high percentage of 

the time, or when it was faulty a low percentage of the time [6]. 

In [20], Sheng developed a tool that was very similar to Ding’s tool. Nearly iden-

tical causal inference techniques and statistical fault localization methods were 

used. However, Sheng created the tool for numerical Java programs, similarly to 

this thesis. Also, Sheng’s tool did not translate the Java program’s into pure GSA 

form [20], like Ding’s did. Instead, Sheng used a method that was inspired by GSA 

form, and was argued to result in the same variable outcomes [20]. Within the 

empirical experiment aspect of the study, the tool performed well; but it faced 

limitations when faced with faults not related to assignment statements [20]. 

In [19], Roach developed a tool which was basically the next iteration on Sheng’s 

tool. Sheng’s tool used Soot to convert the Java programs to the inspired-GSA 
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form [20], but Roach’s tool—similarly to this thesis—used ANTLR for the trans-

lation process [19]. However, Roach’s tool still difered from this thesis in that it 

continued to use an inspired version of GSA form [19]. For the fault localization as-

pect of Roach’s study, an existing statistical fault localization method called Coun-

terFault [18] was used (just like for this thesis). CounterFault is more established 

than the fault localization methods used in the previous studies,so Roach’s tool was 

able to rank the faulty variables highly—in terms of their suspiciousness scores— 

in most cases [19]. However, similarly to Ding’s tool, the tool was noticed to behave 

poorly when the faulty variable was faulty a high percentage of the time, or when 

it was faulty a low percentage of the time [19]. 

In [14], Küçük utilized a modifed version of Roach’s tool for a highly in-depth 

analysis on value-based statistical fault localization for Java programs using causal 

inference techniques. Rather than using CounterFault, Küçük used a new and im-

proved version of CounterFault, which was labeled as UniVal [13]. CounterFault 

only works on numerical and categorical assignment statements, whereas UniVal 

is able to handle numerical, categorical, boolean, structured types, and string as-

signment statements [14]. Due to these capabilities, Küçük was able to execute an 

extensive empirical study using a large Java library called Defects4J [5, 14]. Whereas 

in the other studies [6][20][19] only numerical programs could be considered. 
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1.3 Contributions 

As described in the previous section, other than Ding’s tool [6], all other previous 

studies [20][19][14] utilized an inspired-GSA form. Thus, it can be reasonably as-

sumed that this may lead to some limitations. That is why, in this thesis, a source-

to-source compiler will be used to convert Java programs into new Java programs 

that are in true GSA form. By no longer using an "inspired by" version of GSA, the 

causal inference strategies used during the statistical fault localization section of 

this study are expected to be more accurate. 

Given that this is the frst iteration of this tool, this thesis will compare more 

heavily to Sheng and Roach’s studies. Meaning, this thesis will solely focus on nu-

merical Java programs. By implementing a true GSA form translator for numerical 

Java programs, and testing it with CounterFault, this thesis’s tool will be able to be 

cross-examined with previous tools, which will give a clear display of how much 

of a diference implementing true GSA form can make. 
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2 Background 

2.1 Static Single Assignment Form 

A program is in Static Single Assignment (SSA) form when every variable within the 

program has exactly one assignment statement [17]. As can be seen in Figure 2.1, 

when translating a program in non-SSA form to a program in SSA form, variables 

are all renamed to include an iteration number. Meaning, when a variable is as-

signed to a new value it is instead renamed to be the next iteration of that variable, 

so then every variable still only has one assignment statement associated with it 

(an example of this can be seen in Figure 2.1 with variable x). 

Figure 2.1. Non-SSA vs. SSA 
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The SSA form described above works perfectly for programs with no condition-

als. However,when conditionals are present—which is the case in most programs— 

programs split into multiple diferent branches, and this makes it difcult to de-

termine what variable versions to use in future statements. To solve this issue, 

the ϕ-function is introduced (otherwise known as a pseudo-assignment function) 

which is designed to return the variable version from the branch that was actu-

ally selected during run-time [17]. For example, in Figure 2.2 the SSA code snippet 

shows that x4 is assigned to ϕ(x2, x3), meaning when the condition is true x4 will be 

set equal to x2, whereas when the condition is false x4 will be set equal to x3. There-

fore, the ϕ-function allows the program in Figure 2.2 to print the correct value at 

the end of the code snippet. 

Figure 2.2. Non-SSA vs. SSA (Conditionals) 

Figure 2.2 makes the translation from a non-SSA conditional to a SSA condi-

tional look fairly simple. However, when working with more complex conditional 

statements—particularly ones with more than two branches—the translation from 

non-SSA form to SSA form can get far more difcult. Plus, when working with 
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loops even more difculties get introduced. Thus, to deal with all of these issues, 

an extension of SSA is introduced called Gated Single Assignment (GSA) form. This 

extension of SSA will be described in detail in the following section. 

2.2 Gated Single Assignment Form 

SSA form is generally used to identify points in a program where variable defni-

tions get uncertain (due to conditionals or loops), but it fails to actually interpret 

these points during runtime [17]. After all, the ϕ-function in SSA does not take 

a condition as input, so there is no way—programmatically—to determine the 

variable version at runtime. Therefore, Gated Single Assignment (GSA) form was 

introduced to replace all ϕ-functions with gating functions that can be executed at 

runtime [17]. In total, GSA has three distinct gating functions, which are described 

below: 

• ϕif (p, v1, v2): this function is placed at the end of all if statements for each 

variable that is modifed within the if statement. p represents the predicate 

of the if statement, v1 represents the value that the given variable is equal 

to if the predicate evaluates to true, and v2 represents the value that the 

given variable is equal to if the predicate evaluates to false [17]. Thus, this 

function has identical logic to an if − then − else statement; because it 

just says that if p is true, return v1, else, return v2. 

• ϕentry(vinit, viter): this function is placed at the frst usage of each variable 

within a loop. It’s purpose is to determine whether the given variable should 

be set to it’s initial value vinit, or to the value of the most recently iterated 
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version of the variable viter [17]. Thus, to put it simply, the function will 

return vinit until viter has been reached within the program. 

• ϕexit(vinit, vexit): this function is placed at the end of every loop for each 

variable that is modifed within that loop. vinit represents the value of the 

given variable before the loop is executed, and vexit represents the value of 

the given variable if it were changed within the loop [17]. To put it simply, 

this function will only return vinit if the loop is executed and v is never iter-

ated or reached within the execution of the loop; or, if the loop condition 

is never true to begin with. 

2.3 Causal Inference 

2.3.1 Causal Effects 

Causal inference is a feld of study that focuses on identifying and quantifying the 

causation of one variable onto another. The variable A that is being studied as 

the causation variable is known as a treatment variable, and the variable Y that 

is being measured in response to the treatment variable is known as the outcome 

variable [9]. For example, consider a theoretical scenario where a binary treatment 

variable A represents whether or not an individual has been vaccinated for some 

sickness, and a binary outcome variable Y represents whether or not an individual 

has died. To be more specifc, A = 1 represents a subject that has been vaccinated, 

A = 0 represents an individual that has not been vaccinated, Y = 1 represents a 

subject that died, and Y = 0 represents a subject that did not die. Also, to clarify 

some more terminology, Y a=1 and Y a=0 are what we call counterfactual outcomes, 
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which are the outcomes that are returned when A = 1 and A = 0, respectively [9]. 

Meaning, Y a=1 would let us know whether or not a vaccinated subject died, and 

Y a=0 would let us know whether or not a non-vaccinated subject died. Thus, now 

that we are familiar with the terminology, we can try to determine whether or not 

vaccination has a causal efect on death. The trivial way to determine this would 

= Y a=0be to observe the values of Y a=1 and Y a=0 and then compare them. If Y a=1 

we would say A has no causal efect on Y , whereas if Y a=1 ̸= Y a=0 we would say A 

has a causal efect on Y . 

The method described above sounds simple, but unfortunately—in virtually all 

real scenarios—a subject cannot receive both treatment values [9, 16]. Even if an 

individual received both treatment values, the second outcome would then be in-

fuenced by the frst treatment value [16]. After all, when considering our example 

from above, we could take an untreated subject (A = 0) and measure their out-

come Y , and—given that they did not die—we could then give them the vaccine 

(A = 1) and measure their outcome Y once again. However, the earlier treatment 

(A = 0) may now have an infuence on the second treatment, which will impact 

the outcome Y . Plus, counterfactual outcomes are meant to represent the same 

subject under all of the same conditions (other than the treatment value itself). 

Thus, if Y is observed at two diferent times, any action taken between the two 

observations—or any other natural changes—will modify the conditions of the 

subject [16]. This issue is labeled as the fundamental problem of causal inference, 

because if we cannot measure both counterfactual outcomes Y a=1 and Y a=0 then 

it is impossible to measure whether or not a causal efect is present for an individ-

ual [16]. 
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To bypass the fundamental problem of causal inference, the average causal 

efect in a population of subjects is often considered instead [9]. With an individual, 

we determined a causal efect was present if: Y a=1 ̸= Y a=0, whereas for an average 

causal efect, we say it is present if: Pr[Y a=1 = 1] ̸= Pr[Y a=0 = 1] [9]. To better 

understand this defnition we will return to the vaccination example from earlier: 

if we have a population of individuals where some have been vaccinated, and some 

have not, we can measure the proportion of vaccinated individuals that have died 

and compare it to the proportion of non-vaccinated individuals that have died. If 

these proportions are unequal, we say that A has an average causal efect on the 

outcome Y . 

Average causal efects help with the fundamental problem of causal inference, 

but they still are not perfect. After all, average causal efects are estimations of 

causal efects [9]. In order to truly calculate a causal efect, it is necessary to know 

all counterfactual outcomes for certain, which is generally impossible due to the 

fundamental problem of causal inference. Nonetheless, average causal efects are 

an improvement of individual causal efects,but because they are estimations, they 

leave room for biases [9]. Although there are many forms of biases, for this thesis, 

we will solely focus on confounding bias, which will be described in the following 

section. 

2.3.2 Confounding Bias 

Consider a study that measured data on people trying a new medication and peo-

ple dying. The study discovers that people trying the new medication are more 

likely to die than the people who do not take the new medication. Does this imply 
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that the new medication is causing people to die? Although that may seem like the 

logical explanation, it must be remembered that association does not always imply 

causation. For example, in this theoretical study it may be the case that people tend 

to only try the new medication when they are sick. Meaning that someone taking 

the new medication is a cause of sickness. Furthermore, it is known that death is 

also a cause of sickness. Thus, if sickness causes people to try a new medication 

and it causes people to die, is the medication really what is causing the people 

to die? Or is it the sickness? This interference from sickness is called confound-

ing bias; and in this exact scenario, sickness would be labeled as a confounding 

variable or a confounder [9]. Figure 2.3 showcases this concept in a more general 

sense. L represents the confounding variable because it has a cause on both the 

treatment variable A and the outcome variable Y . Therefore, for a given subject 

from the example above, L would represent whether or not they are sick, A would 

represent whether or not they tried the new medication, and Y would represent 

whether or not they died. 

Figure 2.3. Confounding Bias [9] 

In this thesis, the confounding variables to identify and account for are pro-

gram variables that may cause other program variables or statements to have high 

suspiciousness scores. For example, let’s say there exists a faulty program variable 

F and another program variable N that has an assignment that depends on F . If 
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this confounding bias is unaccounted for, N may be the variable that is given a 

high suspiciousness score instead of F , even though F is the variable that is truly 

responsible for N ’s faultiness. The strategies for locating and accounting for these 

confounding variables will be discussed in further detail later. 

2.4 Source-to-Source Compilation 

Source-to-source compilers (or transpilers) are special types of compilers that 

translate programs from one programming language to equivalent programs in a 

diferent programming language [12]. Generally, source-to-source compilers are 

used when converting a program to match the language of a given system, or when 

trying to convert useful code to a more optimized language [12]. However, in this 

thesis, source-to-source compilation will be used for statistical fault localization 

methodology. To do so, the regular approach to source-to-source compilers will 

be slightly modifed. Instead of translating from one programming language to 

another, one programming language will be translated to a variant of itself that is 

in GSA form. Previous studies [20][19][14] also made source-to-source compilers 

to translate to GSA form. However, once again, the previous studies did not imple-

ment a true form of GSA. Thus, by implementing a source-to-source compiler that 

converts a program into a true form of GSA, causal inference methods can be used 

on our compiled programs to more accurately execute statistical fault localization. 
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2.5 Statistical Fault Localization 

As briefy mentioned in the introduction of this thesis, statistical fault localization 

utilizes a variety of statistical methods to rank program elements by how likely they 

are to produce faults. To be more specifc, statistical fault localization requires test 

inputs, which produce corresponding execution profles [4]. These execution pro-

fles are associated with each program element, and they keep track of whether 

or not that given program element was executed during the given test input. All 

of the execution profles are compared to the output of the program, which must 

be labeled as a "pass" or a "fail" [4]. The type of statistical fault localization be-

ing described is coverage-based, and it generally concludes that those program 

elements that are executed more when a test input results in a "fail" implies that 

those program elements are more likely the cause of the fault [4]. The association 

between the execution profle of a program element and whether or not a test input 

resulted in a "fail" is used to calculate the suspiciousness score for that given pro-

gram element [4]. All program elements are ranked by their suspiciousness scores 

in decreasing order, so then developers can easily go down the list of suspicious 

program elements until they discover the cause of the software fault [4]. 

Coverage-based statistical fault localization specifcally excels in programs with 

lots of conditional statements [19]. This is due to the fact that suspiciousness scores 

are calculated solely of of whether or not a program statement was reached or not 

for each test case. Therefore, if a program had no conditional statements, every 

variable would be executed, and thus every suspiciousness score would be equal 

to 1. To account for this faw, there exists another type of statistical fault localiza-

tion called value-based statistical fault localization. In value-based statistical fault 
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localization, the value of every program element will be recorded during each test 

execution [18]. These values are compared to each other for successful and unsuc-

cessful program executions, so then suspiciousness scores can be calculated based 

of of variable values. Value-based statistical fault localization will be used for this 

thesis to avoid the limitations of pure coverage-based statistical fault localization 

techniques. 

2.5.1 CounterFault 

As mentioned earlier, this thesis will be utilizing an existing value-based statistical 

fault localization methodology, called CounterFault ; which is particularly unique 

because it also utilizes causal inference techniques within it. CounterFault reads 

through the causal relationships of variables in a program, and uses these relation-

ships to account for confounders [18]. 

The original CounterFault utilized an "inspired" version of GSA to gather the 

variable values (value-profles) and their corresponding "parent" variables (i.e. the 

confounding adjustment variables) on each test program execution [18]. For a 

given test execution, once all of the value-profles were gathered—along with the 

causal maps—each GSA variable would have a random forest regression model 

trained for it [18]. The random forest models were trained by inputting the value-

profles of the given variable, along with the values of the given variable’s confound-

ing variables [18]. For numeric variables, a set of 10 representative values would 

be derived from 10 equally spaced quantiles of the recorded values of the given 

variable [18]. Once these representative values were computed, each pair of rep-

resentative values (a, b) would be used to compute two distinct counterfactual 
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outcomes: E[Y A=a] and E[Y A=b] [18]. In CounterFault, the outcome variable Y rep-

resents whether the given program failed (Y = 1) or passed (Y = 0) [18]. On the 

other hand, the counterfactual outcomes E[Y A=a] and E[Y A=b] represent an esti-

mate of how likely the program is to pass or fail, on a scale between 0 and 1 [18]. 

The pair (a, b) which results in the largest average causal efect will be assigned as 

the value of the given variable’s suspiciousness score [18]. 

In this thesis, CounterFault ’s statistical fault localization framework will be uti-

lized to compute the suspiciousness score rankings. However, the previous GSA 

framework is being replaced by a new GSA source-to-source compiler that was 

developed for this thesis. This tool will be described in great detail in the chapter 

to follow. 
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3 GSA Source-to-Source Compiler 

3.1 Design 

The GSA source-to-source compiler designed and implemented in this chapter is 

the fundamental component of this thesis. To summarize the compiler in simple 

terms: it takes a Java program, transforms it into an equivalent Java program in 

GSA form (as well as producing a causal map that contains each variable in the 

program), and then uses the GSA form fle and the causal map to perform statisti-

cal fault localization. The specifc design details will be elaborated further in the 

following subsections. 

3.1.1 Single Static Assignment 

Since GSA is an extension of SSA, the frst design aspect to be focused on is generic 

SSA form. Just to reiterate, SSA form constraints that every variable should have 

exactly one assignment [17]. Thus, the design for this compiler would be to re-

name every single variable within the program so that the variable name includes 

a variable-number. The variable-number would start at 0 for each variable name 

and iterate up by one each time that variable name would be assigned to a new 

value. A hash map would be used to keep track of this variable-number, by having 
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every variable name linked to a corresponding variable-number (which will be 

incremented each time that variable has a new assignment statement). As for the 

actual syntax, the variable-number would be appended to the end of each variable, 

but separated by an underscore (like the syntax shown in Figure 3.1). 

Figure 3.1. Non-SSA Code Translated into SSA Code 

3.1.2 If Statements 

The frst gating function focused on would be the ϕif function. As explained in 

section 2.2, a ϕif function needs to be placed at the end of every if statement chain 

for each variable that is changed within that given if statement chain. The design 

for tracking which variables were modifed within a given if statement chain would 

be accomplished by saving a copy of the variable-number hash map at the time of 

entrance to the if statement chain, then comparing it with the variable-number 

hash map at time of exiting the if statement chain. Whichever variables would 

have variable-number values that difer between the two hash maps must have 

been modifed somewhere within the if statement chain. 

Next, once the modifed variables would be known, the actual ϕif functions 

would be constructed. As stated in section 2.2, the ϕif function takes three inputs: 
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ϕif (p, v1, v2). The frst input p is the condition to the given if statement. Thus, by 

design, it would be needed that as conditions are approached within the compiler, 

they must be saved into a list. To be more specifc, the conditions that have already 

been modifed to account for variable-numbers (i.e. be in the syntax of Figure 3.1) 

would be saved into a list. After all, if the conditions were saved prior to being 

translated to GSA form, the variables used within them would not be recognized. 

The next two inputs to the ϕif function are v1 and v2, which represent the values 

of the given variable depending on if the condition p is true or false, respectively. 

To determine if a given variable were to be changed across an entire if statement 

chain, the hash map method described above could be used; but unfortunately 

that design does not provide a way to determine when and where each variable 

was actually assigned. Meaning, currently there would be no way to know whether 

a given variable was assigned in the if statement, one of the else-if statements (if 

there are any), or the else statement (if there is one). Thus, it is necessary to have an 

additional design element to account for where each variable is actually assigned. 

The design to accomplish this would be a list of hash maps, where each hash map 

represents a block of the if statement (meaning either the if statement, one of 

the else-if statements, or the else statement). The hash map for each block would 

contain a mapping from each variable within the block to the last variable-number 

encountered for that variable within the block. Only the last variable-number is 

needed for each individual block because the last occurrence of each variable is 

the one that will actually be—potentially—the output of the ϕif function. 

Also, it is important to note that the same design used to track which variables 

were changed in an entire if statement chain—where the variable-number hash 
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map is copied and saved—can not be used for this design as well. This is because 

the hash maps for each if statement block should only contain the variables that 

are actually modifed within the given block. The global variable-number hash 

map would contain the variable-numbers of all variables within the Java program, 

which would provide incorrect information to the design, because the if statement 

block hash maps are designed to represent the last defned variable versions within 

that given block. Therefore, variables defned outside of the given block should not 

exist within the hash map for that block. 

Once the three inputs would be gathered, the ϕif functions would be placed 

at the bottom of the if statement chain, and they would be assigned to new vari-

able versions for each of those modifed variables. A visual representation of this 

explanation can be seen in Figure 3.2. 

Figure 3.2. ϕif Function Design Example 
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All of the design aspects explained for if statements thus far satisfy the needs 

for a simple if-else statement. However, there are a few if statement variants that 

we need to be able to consider. Imagine an if statement that has no else statement, 

or an if statement that only modifes a variable in one block of the if statement 

chain (i.e. only in the if block or only in the else block). Examples of these types of if 

statements can be seen in Figure 3.3. All of these examples require that a few extra 

conditions are added to the existing design. The frst addition is a simple condition 

that can check whether or not the given if statement has an else block. If it does 

not have an else block, it is known that if p is false, then the variable version prior to 

the if statement chain should be returned. As for the other examples, additional 

checks have to added to the existing hash map framework. The design already 

has a hash map for each block of an if statement chain, so when constructing 

the ϕif functions, there needs to be a check of whether or not the current variable 

was changed in the if block and whether or not it was changed in the else block 

(by checking each blocks’ hash map). If the given variable was not changed in 

one of the blocks, then the defnition of the given variable prior to reaching the if 

statement chain would be returned (justhow it is displayed in the last two segments 

of Figure 3.3). 

The design for if statements has been fully satisfed for if statements and if-

else statements, but what about when we have an if statement chain that includes 

else-if statements? To keep consistencies with the existing design, if statement 

chains with else-if statements would still be contained in one ϕif function, but the 

function would include calls to itself. After all, the ϕif function uses one condition 

to decide between two variable versions, so in order to include more decisions, 
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Figure 3.3. Additional ϕif Function Design Examples 

more ϕif functions would be needed. To be more specifc, one extra ϕif function 

would be needed for every else-if block. This is because every else-if chain intro-

duces a new condition, which then has two possible outcomes (true or false). To 

fully explain this design, Figure 3.4 provides a clear example of an if statement 

chain with multiple else-if blocks. 

From Figure 3.4, it can be seen that no matter the length of the if statement 

chain, the ϕif function continues to copy an if statement’s behavior. When p0 is 

true, x1 is returned, else if p1 is true, x2 is returned, else if p2 is true, x3 is returned, 

else, x4 is returned. Therefore, the ϕif function still maintains the same semantics 

as the if statement chain it is representing. Plus, it is important to note that all of 

the design aspects mentioned above would still work with if statements of longer 

lengths, as long as the ϕif functions are formatted in this way (like in Figure 3.4). 

3.1.3 Switch Statements 

There is no mention of switch statements in GSA literature, but it would be desir-

able for the GSA compiler to work on as many Java programs as possible. Thus, 
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Figure 3.4. ϕif Function Long Chain Example 

some improvisation was required. Since switch statements behave intensely simi-

larly to if statements, the decision was made to translate all switch statements into 

if statements, so then they could follow the same GSA conversions as described 

in the previous section. An example translation is shown in Figure 3.5. 

It is important to note the diference between a switch statement case where 

there is not a break statement versus when there is a break statement. When a 

break statement is not present in a given case, the following case should not be 

connected to that if statement chain, because inside the original switch statement, 

the following case could theoretically be executed as well. However, if a break state-

ment is present in a given case, the following case should be connected to the if 

statement chain, because inside the original switch statement, if that given case 

were executed it would then break out of the switch statement. Meaning, no cases 
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Figure 3.5. Switch Statement to If Statement Translation 

below the given case would be executed as well. This is identical to how if state-

ment chains work, because at most one block from the chain will be executed. 

3.1.4 Loops 

The remaining two gating functions, ϕentry and ϕexit, are both related to loops. Java 

contains three types of loops: for, while, and do-while. Since for loops are fairly 

complex, the design goal would be to translate all for loops into while loops prior 

to generating the GSA form of the given Java program. To do so, the initialization 

step would be moved above the loop, and the iteration step would be moved to the 

very bottom of the loop’s body. Figure 3.6 provides an example of this translation. 

By transforming all for loops into while loops, only while loops and do-while loops 

need to be considered. However, since while loops and do-while loops function in 

nearly identical ways, only generic while loops will be discussed for the rest of the 

design section (for consistency purposes). 
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Figure 3.6. For Loop to While Loop Translation 

Unlike how the ϕif function is simply added at the end of an if statement chain, 

the ϕentry function needs to replace existing code. Specifcally, the ϕentry function 

needs to replace every reference to a variable in a loop given that the variable has 

not been assigned within the loop itself. This includes all variables used within 

the loop’s condition as well. Figure 3.7 displays how the ϕentry functions should 

be placed. It is important to note that x1 is not replaced with a ϕentry function on 

line 4 because x1 has already been assigned to a ϕentry function in the previous 

line. Also, just to reiterate, the ϕentry function is meant to determine between the 

initial variable and the most recently iterated version of the variable in the loop. 

Thus, that is why the function is choosing between x0 and x2, because x0 is x’s 

defnition prior to the loop, and x2 is the last defnition of x within the loop’s body. 

The variable-number hash maps before and after the loop’s execution would be 

used to determine these values. 

Knowing where to place the ϕentry functions is simple, but in order to fll them 

with the correct information, future details are needed. For example, when reach-

ing the condition of a while loop, it is known that all variables used within it would 

need to be replaced by a ϕentry function, so both the initial defnitions of those 

variables and the last iterated defnitions of those variables within the loop would 
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Figure 3.7. While Loop in SSA Form vs. GSA Form 

need to be known. The initial versions of those variables could be obtained easily, 

because they would be obtained from calling on the variable-number hash map 

at that point in the code. However, how would the last iterated versions of those 

variables within the loop be obtained? After all, the loop’s body would not have 

been reached at this point. Therefore, rather than replacing variables with ϕentry 

functions as they are encountered, the design is to just save their locations as they 

are encountered. Once the while loop is traversed entirely, all of those locations 

can be revisited and replaced with ϕentry functions; because at that point, the last 

defned versions of each variable within the loop would be known, so all of the 

necessary information would be known to populate the ϕentry functions. 

As for the ϕexit function, the design is similar to the ϕif function. After all, for 

every variable that is modifed within a given while loop, there must be a ϕexit 

function placed at the end of the while loop for it. Since the ϕexit function must 

decide between the defnition of the given variable prior to the loop and the last 

version of the variable within the loop, it can utilize the same version numbers 

obtained for the ϕentry functions. An example of a ϕexit function can be seen in 

Figure 3.7. 
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The ϕif function decides which variable version to return based of of the condi-

tion input p. However, the ϕentry and ϕexit functions do not have a condition input, 

so there needs to be a way to determine which variable version to return. To do 

so, both functions will check to see if the vexit has been defned. If the vexit has 

been defned, it will be returned, if not, vinit will be returned (which is the variable 

version prior to the loop). In Java, this design is generally not plausible, because 

variables that have not been defned cannot be inputs to functions. However, in 

the implementation section of this chapter it will be explained how this design was 

successfully implemented. 

3.1.5 Data Recording 

For value-based statistical fault localization, the value of each variable needs to be 

known at the end of each test case. This implies the necessity for a way to record 

variable values during program execution. The design to accomplish this would be 

to add "record" statements after every variable assignment which would output 

all variable-value pairs into a text fle. The record statements would need to be 

included in the design, and they would allow for variable values to be known after 

each test execution. Figure 3.8 showcases what these record statements would look 

like. For the purpose of this thesis, only the variable name and variable value are 

necessary for recording. 

Value-based statistical fault localization also requires each test execution to 

result in either a "pass" or a "fail" (or in causal inference terminology, an outcome 

variable Y with value 0 or 1). However, this requirement brings forth multiple limi-

tations to our design: 
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Figure 3.8. Variable Value Record Statements 

• First of all, in order to determine if a test case "passed" or "failed", it is nec-

essary that the correct output is known. Therefore, if there exists a faulty 

program with an unknown correct output, our design would not be able 

to correctly rank the suspiciousness scores of all of the variables in an em-

pirical study. 

• In many cases a program will not have a single output. Also, there are many 

cases where a developer may be more interested in checking an outcome 

that is not the fnal output of the program. Meaning, in the eyes of the 

compiler, it is unclear where the "output" should be recorded. 

The limitations above require the necessity for developer intervention. The 

ideal design would be entirely automated, but there is no current way to bypass 

the limitations listed above. Thus, under the current design, developers must have 

a faulty and non-faulty version of the program of interest. Or, at the very least, the 

developers must be aware of what the desired output should be, even if they do 
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not have a non-faulty iteration of the program of interest. Also, the second lim-

itation requires the developer to manually insert where to record the program’s 

"output". To do so, the design includes a "record-output" function, which should 

be placed wherever the desired output is returned within the program of inter-

est. This function will print the output to the same text fle that all variable-value 

pairs are printed to. However, the "record-output" function will label the output 

diferently, so it can be singled out in an empirical study. 

Although the loss of an entirely automated process is upsetting, by allowing the 

developer to place the "record-output" function anywhere they desire, it actually 

provides the design with a lot of fexibility. After all, it permits the developer to test 

any section of their program that they may suspect has a fault. With an entirely 

automated process, the developer would not have this type of freedom. 

3.1.6 Causal Map 

A causal map is a causal inference data structure that represents the dependency 

relationships of the objects of interest [7]. In this thesis, the causal map would 

need to consist of the GSA variables within the program of interest, and map each 

variable to all of the variables that were included within that variable’s assignment 

statement. Since the compiler transforms the program into GSA form, all variables 

are assigned once, so we know for certain all of the variables that a given variable 

depends on. 

To actually create the causal map, a hash map will be used that maps variables 

to lists of variables. In the compilation process, whenever a variable is assigned, it 
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will be added as a key to the causal hash map,then all variables included in the right-

hand side of the assignment expression will be added to a list and mapped to the 

variable key. For example, if the following assignment statement is encountered: 

x2 = x1 + y0; 

then the following key-value pair will be added to the causal hash map: (x2, (x1, y0)). 

This represents the meaning that the variable x2 is dependent on the variables x1 

and y0. 

Once the entire program of interest is traversed and all variables have been 

added to the causal hash map, the hash map then needs to be saved externally. 

To do so, the design would simply loop through the hash map and print every 

key-value pair to a text fle. This allows the developer to have access to the causal 

dependencies for all variables within the GSA Java program. This is crucial because 

a causal map is needed to implement the causal inference techniques into the sta-

tistical fault localization process. Without a causal map, confounding bias would 

not be dealt with. 

3.2 Implementation 

3.2.1 ANTLR4 

In order to create the GSA compiler, a way to parse through Java fles was necessary. 

ANTLR (ANother Tool for Language Recognition) was used for this purpose [3]. The 

tool is extremely fexible, as it can take any grammar and produce a parser for it 

that can be used to read, process, execute, or translate fles that obey the given 



31 GSA Source-to-Source Compiler 

grammar [3]. To be more specifc, ANTLR4 uses a given grammar fle to produce a 

variety of fles: parsers, lexers, listeners, and visitors. When a program—that obeys 

the given grammar—is run through ANTLR4, a parse-tree for that program is cre-

ated using the ANTLR4-generated fles [3]. ANTLR4 also generates "tree walkers", 

which give developers the freedom of visiting any nodes within the parse-tree for 

the purpose of analyzation or modifcation [3]. 

For this thesis, an existing Java grammar fle [8] was used for ANTLR4. Once Java 

fles are inputted into the framework, the primary ANTLR4 feature that is utilized 

is the parse-tree walker. Using this ANTLR4 feature, every parse-tree node can be 

visited and modifed at both entrance and exit. Meaning that as the parse-tree is 

traversed—in a preorder traversal scheme—whenever a node is entered, it can be 

visited and modifed, and whenever that same node is exited later, it can be visited 

and modifed once again. This fexibility permits functionality to difer between 

when a node is being entered or exited, which can be quite useful. All of these 

"enter" and "exit" functions take a special context variable as input,which includes 

all of the grammar-specifc elements that are present at that point in the parse-

tree. Figure 3.9 showcases one of the "enter" methods that can be overridden. The 

ctx input has type JavaP arser.ClassDeclarationContext, which includes all of the 

necessary contextual information that should be known at a Java class declaration. 

Within the code, the Identifier() feld is used to return the given Java fle’s class 

name. This is a simplistic example of how ANTLR4 visitor functions can be used 

to obtain information from the code being parsed. 
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Figure 3.9. enterClassDeclaration Method 

Figure 3.9 also showcases the use of the rewriter variable. The rewriter vari-

able is of type TokenStreamRewriter, which is an object type from ANTLR4. To-

kenStreamRewriter objects can be used to modify the code that is currently be-

ing parsed. Thus, the rewriter object is what is being used to actually translate 

the input Java program into the output Java program (which will be in GSA form). 

Fortunately, the rewriter object has tons of fexibility, as it allows for text to be ap-

pended after a token, before a token, or replace the token entirely. This is largely 

why ANTLR4 was chosen to implement source-to-source translation for this thesis. 

3.2.2 Pre-Processing Translation Pass 

As discussed in the design section, there are a few Java statement types that need 

to be translated to other statement types. The purpose of doing these translations 

was so multiple GSA translations would not be necessary. For example, the design 

states that all for loops need to be translated to while loops prior to translating 

them to GSA form. Thus, only a GSA translation for while loops will be necessary. 

In order for these translations to be made prior to any GSA conversions, a pre-

processing parsing pass needs to done on the input Java fle, which will only focus 
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on these translations. Along with the switch statement and for loop translations, 

there are a few other translations that were decided on to simplify the GSA transfor-

mation process. All of the primary focuses of the pre-processing translation pass 

are listed below: 

• Transform all switch statements into if statements. 

• Transform all for loops into while loops. 

• Transform all types of assignment statements into generic assignment 

statements. Examples: change x += 1 into x = x + 1, change x *= y + 5 into x 

= x * (y + 5), etc. 

• Save all global variables into a list. 

The reasoning for translating all types of assignment statements into generic as-

signment statements is the same as why all for loops are being translated to while 

loops. It simply makes the GSA conversion process much easier, as it guarantees all 

assignment statements will be of the same form, so only one GSA transformation 

is necessary for assignments. Plus, GSA form requires that all assignment state-

ments are generic assignment statements, because in GSA form, every assignment 

statement is also a variable declaration. So by making the translation beforehand, 

it makes the GSA translation code less cluttered. 

As for the global variable list, this is necessary because—in Java—global vari-

ables can be referenced on a line number that is lower than the line number of 

where the global variable is actually declared. On the other hand, in ANTLR4, when 

the parse-tree is being walked, it will traverse the code line-by-line. This means 
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that if a global variable reference is located prior to the global variable’s declara-

tion, there will be no way to determine what type of variable has been encoun-

tered. This issue is only important for the GSA transformation pass, because it 

needs to be known that a global variable has been encountered, so it can be ig-

nored (since global variables are not included in the scope of this thesis). Thus, 

the pre-processing translation pass saves all global variables, and will pass the list 

to the GSA transformation pass so it will always know which variables are global 

variables, so they can be handled correctly. 

3.2.3 GSA Transformation Pass 

The frst implementation focused on for the GSA transformation pass was translat-

ing all variables into a new object type. The reasoning for this implementation is 

because of scoping issues in Java. For example, look back at Figure 3.2, and it can be 

seen that the ϕif function takes x_1 and x_2 as inputs. However, x_1 and x_2 were 

declared within the if and else statement blocks. Meaning, in Java, those variables 

would not be in-scope where the ϕif function is called on. Therefore, the design 

needed a way for all variables to be in-scope, even if they have not been assigned a 

value yet. This was accomplished by creating a new object type called "Var", which 

contains a feld called "value". Using this framework, all variables can be assigned 

to null at the top of the method they are declared in. Thus, even if they have not 

been declared an actual value, they can still be referenced in phi functions. 

By creating an object type for all variables, it also simplifes the implementation 

of phi functions. After all, an undeclared variable will simply be null. The imple-

mentation for the 3 types of gating functions are described below: 
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• ϕif (p, v1, v2): this implementation is identical to the theory, as it simply 

returns v1 if p is true, and it returns v2 if p is false. 

• ϕentry(vinit, viter): by using our "Var" object type, undeclared variables will 

be null. Thus, the implementation checks if viter is null or not. If it is null, 

vinit is returned. Otherwise, viter is returned, because it being non-null im-

plies that it has been declared. 

• ϕexit(vinit, vexit): this implementation is identical to the ϕentry implementa-

tion. If vexit is null, vinit is returned. Otherwise, vexit is returned. 

The rest of the design elements were implemented using the ANTLR4 visitor 

functions, which Table 3.2 goes over in detail: 

Method Name Method Description 

enterClassDeclaration Obtains the class name for the purpose of cre-

ating all of the output fles (which will use 

the class name in their titles). Also, appends 

"_Faulty" to the end of the class name when 

creating the faulty iteration of the program. 

enterInterfaceDeclaration Obtains the interface name for the purpose 

of creating all of the output fles (which will 

use the interface name in their titles). Also, 

appends "_Faulty" to the end of the interface 

name when creating the faulty iteration of the 

program. 
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enterConstructorDeclaration Obtains constructor name, to be included 

in record statements for variables declared 

within it. Also, appends "_Faulty" to the end 

of the constructor identifer when creating 

the faulty iteration of the program. 

exitConstructorDeclaration Informs the code that the constructor has 

been left, so "Var" null declarations will no 

longer be made in the constructor. 

enterConstructorBody Informs the code that the frst line of the con-

structor needs to be located for "Var" null dec-

larations. 

exitConstructorBody Used to ensure that constructors start with 

super or this calls. 

enterMethodDeclaration Gets current method name for recording pur-

poses. 

exitMethodDeclaration Erases current method name. 

enterF ormalP arameters Creates a hash map to contain all of the for-

mal parameters for this current method. 

enterF ormalP arameter Adds this formal parameter and it’s type to the 

formal parameter hash map for this current 

method. 
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enterMethodBody Informs the code that the frst line of the 

method needs to be located for "Var" null dec-

larations. 

exitMethodBody Informs the code that the method has been 

left, so "Var" null declarations will no longer 

be made in the method. 

enterBlock Adds a layer to the program’s scope. Also, 

checks if this is the entrance to a method 

or constructor, and if it is, sets the frst line 

(which is where "Var" null declarations will 

be made). 

exitBlock Pops a layer from the program’s scope. 

enterBlockStatement Inserts a comment to separate the null decla-

ration section from the actual code section. 

enterStatement Checks to see if the statement is an if state-

ment or a while loop. From there, it will ini-

tialize all of the required data structures de-

scribed in the design section for that given 

statement. 

exitStatement Checks to see if the statement is an if state-

ment or a while loop. From there, it will utilize 

the corresponding data structures to insert all 

of the phi functions for that given statement. 
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enterLocalV ariableDeclaration Obtains variable type, and deletes the type 

(i.e. transforms int x = 0 into x = 0). 

exitLocalV ariableDeclaration Initializes the "Var" object, and inserts the 

record statement for this variable. 

enterV ariableDeclarator Increases the variable count for this variable, 

adds a causal map entry for it, and inserts 

the null declaration at the top of the current 

method or constructor. 

exitV ariableDeclarator Informs the code that this declaration has 

been left. 

enterExpression Checks if this expression is an assignment ex-

pression. If it is, the assigned variable has it’s 

variable count incremented, a causal map en-

try is added for it, and the null declaration is 

added at the top of the current method or con-

structor. 

exitExpression Checks if this expression is an assignment ex-

pression. If it is, the assigned variable is initial-

ized as a "Var" object, and a record statement 

is inserted for the assigned variable. 

enterP arExpression Manages the depth of if conditions and while 

conditions. 
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exitP arExpression Manages the depth of if conditions and while 

conditions. If this is the fnal closing paren-

thesis, the code is informed that the condi-

tion has been left. 

enterP rimary Manages all variable references. Dependent 

on where the variable is being visited, the cor-

rect variable version needs to be appended. 

This is done through a long list of condition-

als. 

enterCreatedName In the faulty iteration of the program, 

"_Faulty" is appended to class objects. 

Table 3.2. GSA Transformation Pass Visitor Methods 

The above methods work together to implement all of the design aspects dis-

cussed in section 3.1. Thus, with the pre-processing pass and this GSA transforma-

tion pass, a Java input fle can be successfully translated into GSA form (alongside 

a corresponding causal map fle). 

3.2.4 Statistical Fault Localization 

The design elements implemented in the sections above provide a way of (1) trans-

lating a Java program into an equivalent Java program in GSA form, (2) recording 

variable-value pairs during run-time, (3) recording program output values during 
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run-time, and (4) creating a causal map of all the variables in the program. All of 

these design elements need to be combined to actually execute statistical fault 

localization. However, before that is possible, there are a few other fles that need 

to be added to the output of the GSA compiler: 

• A main Java program that will execute all of the test cases on both the faulty 

and non-faulty Java fles, and then compare the outputs. 

• An R fle that will create a table of all GSA variables and their corresponding 

confounding variables (i.e. all of the variables from the causal map). 

• An R fle containing the implementation of CounterFault, which will be 

used to produce the suspiciousness score rankings. 

By default, the main Java program runs the main method on both the faulty and 

non-faulty versions of the program of interest. However, as discussed in section 

3.1.5, the developer has the fnal decision of what output is actually being tested. 

Implying that if the output being tested does not belong to the program’s main 

method—or if the program does not have a main method—the developer will have 

to modify the code to call on the correct method. 

The R fle with the table of all the confounding adjustment variables will be 

generated by the main Java program. This happens by iterating through the causal 

map text fle, obtaining all the key-value pairs, and transferring them into an R 

table, using R’s formatting. 

The CounterFault R fle is provided in the project directory. Thus, it is simply 

copied into the output directory for the current program being tested. In this thesis, 

no adjustments were made to this fle. The same R fle from [14] is utilized. Once the 

main Java program has been executed, and all of the test cases—for both the faulty 
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and non-faulty Java fles—have been run, this R fle should be executed. It will 

produce a CSV fle, which will rank every variable from their suspiciousness scores 

in decreasing order. Therefore, providing the developer with the frst statements 

to check for faws. 

These fles will be used to test the tool in the section to follow, through an in-

depth empirical study. 
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4 Empirical Study 

4.1 Study Design 

In order to evaluate how this tool compares to the tools developed in Sheng [20] 

and Roach’s [19] studies, it was decided that an in-depth empirical analysis would 

be done on a variety of numerical Java programs. Specifcally the same set of 10 

numerical Java programs that were tested on in [20] and [19]. The 10 programs 

each come from one of the following Java libraries: 

• Apache Commons Math 3.6.1 [2]: simplistic mathematics and statistics 

library that includes common math functions that are not available in 

Java by default. 

• JAMA [11]: generic linear algebra library for Java. 

• SciMark 2.0 [1]: Java library used for scientifc and numerical computation. 

In order to evaluate this tool, each test program needs to have faulty versions. 

Thus, a total of 3 faulty versions were constructed for each test program. This was 

done by inserting fault-inducing functions into 3 random assignment-locations of 

each test program (random assignment-locations were chosen to avoid selection 

bias). These fault-inducing functions are contained within a class called "Fluky", 
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which contains fault-inducing functions for a variety of numerical variable types. 

Figure 4.1 showcases an example fuky function for integer variables. The function 

takes the correct integer value i as input, and it also takes a double p as input, which 

represents the probability of a fault occurring. For example, if p is equal to 50%, 

there is a 50% chance that the correct value will be returned, but there is also a 

50% chance that (i + 1) ∗ (int)(r ∗ 2) will be returned. When the latter occurs, that 

variable assignment will ofcially be turned into a fault. 

Figure 4.1. Fault-Inducing Function for Integers 

Each test program has 3 faulty versions to test diferent types of faults in difer-

ent types of locations. Along with fault types and locations, the frequency of faults 

also needs to be tested. For that reason, each faulty version of each program will 

be tested at 4 diferent probabilities of fault-occurrence: 25%, 50%, 75%, and 99%. 

This means that in total each test program will have 12 variations. For each one of 

those variations, the test program will be executed 1000 times. For each of those 

executions, the variable assignments and desired outputs will be recorded to the 

"output" text fle. The variable assignments from all 1000 executions will be used 

to form a table in a new text fle called "newoutput". The table will contain the 
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variable-value pairs for each execution of the test program, and it will be used for 

the statistical fault localization analysis. 

Program # of Lines # of Executions Faulty Versions 
Apache.FastCosineTransformer 183 1000 3 
Apache.FastSineTransformer 182 1000 3 
Apache.LUDecomposition 398 1000 3 
Apache.SplineInterpolator 130 1000 3 

Jama.CholeskyDecomposition 220 1000 3 
Jama.LUDecomposition 344 1000 3 
Jama.QRDecomposition 247 1000 3 

Jama.SingularValueDecomposition 592 1000 3 
SciMark.FFT 202 1000 3 
SciMark.LU 286 1000 3 

Table 4.1. Test Programs 

As for the recorded outputs, they will be used to determine if each execution 

passed (0) or failed (1). To do so, the non-faulty version of each test program will 

be executed, and the recorded outputs—of the faulty version of the program—will 

be compared to the outcome of the corresponding non-faulty program. Once an 

execution has been determined to pass (0) or fail (1), a 0 or 1 will be appended to 

an "outY" fle within the current program’s output directory. Thus, after all 1000 ex-

ecutions for a given program version, there will be a completely populated "outY" 

text fle, which will contain the result of each execution. This will be used for the 

statistical fault localization calculations. 

Once all 1000 executions have been run for a given test program version, the 

last step is running the statistical fault localization analysis. Like mentioned earlier 

in this thesis, the CounterFault framework is being used, so the CounterFault R fle 

simply needs to be run to obtain all of the suspiciousness scores for the current 

test program version. 
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To make things as clear as possible, the process will be walked through for a 

single test program version: 

• First, run the program through the GSA source-to-source compiler. This 

will result in the following output fles: 

(1) Non-faulty Java program in GSA form. 

(2) Faulty Java program in GSA form. 

(3) Causal map text fle which contains all causal relationships. 

(4) Main Java program used for running the non-faulty and faulty Java 

fles on the desired methods and with the desired inputs. 

(5) An R fle that creates a table of all GSA variables and their correspond-

ing confounding variables. 

(6) An R fle containing the implementation of CounterFault (for statisti-

cal fault localization) 

• Next, the developer will modify the main Java program to call on the de-

sired methods to be tested, and to adjust the inputs. 

• The developer will also need to manually add the "record-output" state-

ments within the faulty and non-faulty Java fles at the desired locations. 

• The developer will also need to manually insert the faults into the faulty 

Java program using the "Fluky" class. 

• Moving on, the main Java program will be run, which will go through all 

1000 executions for the faulty program. This will result in the following 

output fles: 
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(1) "newoutput.txt": a table with the variable values for each of the 1000 

executions. If a variable was not reached for a given execution, it is 

given the value: "NA". 

(2) "outY.txt": an array of 0s and 1s, where each number corresponds to 

one of the 1000 executions. 0s represent executions that passed, and 

1s represent executions that failed. 

• Finally, the CounterFault R fle will be executed in an R environment. It 

utilizes the R fle with the confounding adjustment variables, the "newout-

put.txt" fle, and the "outY.txt" fle for it’s fault localization calculations. 

This will result in a CSV fle that contains the suspiciousness scores for all 

variables within the test program version, ranked in decreasing order. 

The entire process above was completed for all 12 versions of each test program. 

The results will be discussed in the following section. 

4.2 Results and Analysis 

Tables 4.2, 4.3, and 4.4 display the rankings of the faulty variables for each test 

program version in terms of suspiciousness score in decreasing order. A ranking 

of 1 implies that the given variable is the most suspicious variable in the program, 

according to CounterFault. 

In this empirical study, 69 of the 120 faulty programs labeled the faulty variable 

as the most suspicious variable over all. Meaning that the majority of the time— 

57.5% of the time, to be exact—this tool was completely correct. Furthermore, 109 
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p = 25% p = 50% p = 75% p = 99% 
Apache.FastCosineTransformer 1/36 1/36 1/36 36/36
Apache.FastSineTransformer 1/27 1/27 1/27 27/27
Apache.LUDecomposition 1/236 1/236 1/236 169/236
Apache.SplineInterpolator 1/28 1/28 1/28 1/28

Jama.CholeskyDecomposition 1/72 1/72 1/72 2/72
Jama.LUDecomposition 1/167 1/167 1/167 167/167
Jama.QRDecomposition 6/185 5/185 8/185 5/185

Jama.SingularValueDecomposition 1/517 1/517 1/517 1/517
SciMark.FFT 1/135 1/135 1/135 128/135
SciMark.LU 1/190 1/190 1/190 187/190 

Table 4.2. Program Fault Version 1: Faulty Variable Ranking 

p = 25% p = 50% p = 75% p = 99% 
Apache.FastCosineTransformer 1/36 1/36 1/36 36/36
Apache.FastSineTransformer 1/27 1/27 1/27 2/27
Apache.LUDecomposition 1/236 1/236 1/236 236/236
Apache.SplineInterpolator 1/28 1/28 1/28 1/28

Jama.CholeskyDecomposition 1/72 1/72 72/72 72/72
Jama.LUDecomposition 5/167 9/167 7/167 1/167
Jama.QRDecomposition 3/185 3/185 3/185 185/185

Jama.SingularValueDecomposition 10/517 5/517 3/517 1/517
SciMark.FFT 2/135 2/135 3/135 3/135
SciMark.LU 8/190 13/190 13/190 1/190 

Table 4.3. Program Fault Version 2: Faulty Variable Ranking 

of the 120 programs (90.8%) labeled the faulty variable in the top 7% of the sus-

piciousness score rankings. Therefore, when comparing the tool on its own, it is 

mostly efective, and thus shows that this methodology could be highly useful for 

the software debugging process. 

However, now the drawbacks of the tool will be addressed. First of all, the tool 

does not function well with faults that occur very often. Although this may seem 

odd—because it would be expected that the more a fault occurs, the more likely it 
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p = 25% p = 50% p = 75% p = 99% 
Apache.FastCosineTransformer 1/36 1/36 1/36 17/36
Apache.FastSineTransformer 1/27 1/27 1/27 16/27
Apache.LUDecomposition 1/236 1/236 2/236 2/236
Apache.SplineInterpolator 1/28 1/28 1/28 6/28

Jama.CholeskyDecomposition 3/72 4/72 5/72 1/72
Jama.LUDecomposition 5/167 5/167 8/167 1/167
Jama.QRDecomposition 5/185 4/185 4/185 1/185

Jama.SingularValueDecomposition 1/517 1/517 1/517 271/517
SciMark.FFT 1/135 1/135 1/135 1/135
SciMark.LU 2/190 2/190 2/190 1/190 

Table 4.4. Program Fault Version 3: Faulty Variable Ranking 

could be pointed to a cause—this actually lines up with how CounterFault func-

tions. After all, CounterFault works the best when faced with "coincidental cor-

rectness" [18]; which is when a faulty variable only results in a fault a fraction of 

the time [15]. This can be logically inferred by understanding how CounterFault 

examines variables and their corresponding values. For example, consider a vari-

able A that can sometimes take value A = 1 and sometimes take value A = 0, and 

these values result in the program either failing (Y = 1) or not failing (Y = 0), 

respectively. Now imagine a large number of test executions are run, and a table of 

variable values are compiled for each test execution. If there exist a decent number 

of cases where A = 1 and a decent number of cases where A = 0, CounterFault 

will more easily be able to detect a pattern between A = 1 and Y = 1. Whereas if 

in every single test execution A were to equal 1, there would be a fault every time, 

and there would be no alternate cases to compare them to. Thus, CounterFault 

would be unsure which variable is causing the fault, because it does not know how 

the variables behave when there is no fault present. This issue caused the tool 

to have signifcant trouble in ranking the faulty variable correctly in many of the 
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cases where the fault probability was 99%. All of the cases where this issue was 

prevalent—meaning the ranking was not in the top 7%—are highlighted in pink 

on Tables 4.2, 4.3, and 4.4. Not only are the results not in the top 7%, most of them 

are signifcantly wrong. After all, more than half of the highlighted cases ranked 

the faulty variable as the least suspicious variable. This implies that CounterFault 

has a signifcant dependence on coincidental correctness, and therefore needs a 

solution to work around this in the future. Although, in the real world, extreme 

cases (i.e. where a fault is very likely or very unlikely) tend to be rare. 

It is important to note why the Jama.CholeskyDecomposition version 2 fle re-

sulted in a horrible ranking for the 75% case. The variable that was randomly se-

lected for a fault insertion was an iterative variable located in a double-nested loop. 

Meaning, the assignment statement had a high probability of being reached mul-

tiple times in each test execution. Thus—even though the probability of the fault 

occurring was only 75%—because it would be encountered so many times per test 

execution, the probability of a fault occurring was highly increased. The "outY" fle 

was examined, and there were only 2 cases where no fault occurred. So, just like 

many of the 99% cases, CounterFault had little information to work with, and the 

suspiciousness score derivations were highly efected. 

While all of the cases that were not afected by a lack of coincidental correctness 

ranked the faulty variable in the top 7%, there were some test program versions 

that performed slightly worse than others: 

• Jama.QRDecomposition version 1 

• Jama.LUDecomposition version 2 

• Jama.QRDecomposition version 2 
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• Jama.SingularValueDecomposition version 2 

• SciMark.LU version 2 

• Jama.CholeskyDecomposition version 3 

• Jama.LUDecomposition version 3 

• Jama.QRDecomposition version 3 

The reason for the slight decrease in performance in these fles is believed to 

be due to array and object usage. Meaning, variable assignments that depend on 

arrays or object variables. The current tool does not deal with arrays or objects, only 

generic numeric variables. Thus, variables that rely on array elements or objects 

cannot adjust for those variables when trying to adjust for confounding bias. The 

test program versions clearly refect this issue, because all but one of them are from 

the JAMA library [11], which utilizes a large amount of arrays and matrix objects. 

The solution to this issue would be to implement array SSA form, which can be 

extended for objects as well [17]. This concept will be discussed in further detail 

in Chapter 6. 

Over all, when individually analyzing the efectiveness of this tool, the outcome 

is generally positive. 90% of the test program versions rank the faulty variable in 

top 7% of suspicious variables, which makes the debugging process signifcantly 

easier for a developer. Although the tool often fails when dealing with faults that 

occur almost always, these cases are rare in reality. Also, although the tool tends 

to perform less well when dealing with arrays and objects, this issue can be fxed 

relatively easily in a future iteration of this tool by adding array SSA form to the 

source-to-source compiler’s functionality. 

https://SciMark.LU
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4.3 Comparison to Previous Studies 

Since Roach’s study [19] was the most recent iteration of a comparable tool, that will 

be the primary focus for comparison. Plus, 9 of the 10 test programs analyzed in the 

empirical study from [19] were used in this thesis’s empirical study. This provides 

a comparable data set, and eliminates any forms of bias around the selection of 

programs. Furthermore, Roach’s study also provides tables that clearly rank the 

faulty variables in the same way that they are ranked in this study, providing a clear 

way to compare results. Lastly,Roach’s study also utilized CounterFault for the fault 

localization rankings, so the only diference between this thesis’s tool and Roach’s 

tool, are the GSA source-to-source compilation tools. 

In [19], only 17 of the 116 programs (14.7%) ranked the faulty variable as the 

most suspicious variable; whereas the tool in this thesis ranked the faulty variable 

as the most suspicious in 69 of the 120 programs (57.5%). Also, in [19], only 41 of 

the 116 programs (35.3%) ranked the faulty variable in the top 7% of suspicious 

variables; whereas the tool in this thesis ranked the faulty variable in the top 7% 

of suspicious variables in 109 of the 120 programs (90.8%). Clearly, the tool from 

this thesis greatly outperformed the tool from [19] in terms of correctness. Plus, 

not only did this tool outperform [19]’s tool, but [19]’s empirical study did not even 

take measurements at high fault probabilities; which is where the tool from this 

thesis received most of it’s fawed results. 

Although the tool from this thesis proportionally outperformed the tool from 

[19], the results should be considered in a diferent way as well. Since this thesis 

implemented pure GSA form,each translated Java program ended up with far more 

GSA variables than Roach’s study. For example, in Roach’s study, the converted 
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version of SciMark.FFT had a total of 68 GSA variables [19]. On the other hand, in 

this thesis the converted version of SciMark.FFT had a total of 135 GSA variables; 

which is more than double the amount of GSA variables. Due to this—for Roach’s 

study—ranking the faulty variable in the top 7% of suspicious variables can be 

fairly difcult in some cases. For example, consider the Jama.LUDecomposition 

program. In Roach’s study, there was a case that ranked the faulty variable as the 4th 

most suspicious variable out of 41 total variables. Whereas in this study, there was 

a case where the faulty variable was ranked as the 8th most suspicious variable 

out of 167 variables. The fraction 8/167 is much smaller than the fraction 4/41, 

but in a real debugging process, a developer would probably prefer to only look 

through 4 variables instead of 8. Nonetheless, this example just explains why there 

were so few faulty variables that were ranked in the top 7% of suspicious variables 

for Roach’s study. But even when ignoring proportional results, the tool from this 

thesis still outperformed Roach’s tool over all. After all, even with signifcantly more 

GSA variables, this tool was able to locate the faulty variable as the most suspicious 

variable 57.5% of the time versus Roach’s tool which could only do it 14.7% of the 

time. 

In [19], Roach mentions that Sheng’s tool [20] resulted in nearly identical re-

sults, but Sheng’s tool did outperform Roach’s tool in cases that relied on arrays. 

After all, Sheng’s tool did implement an inspired version of array SSA form [20]. 

Therefore, Sheng’s tool was able to perform well for programs that utilized arrays; 

which is something that this tool does not include. Nonetheless, even without im-

plementing a way for this tool to handle arrays or objects, the results were only 

slightly negatively impacted for those cases. 
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4.4 Threats to Validity 

By closely replicating existing empirical studies [19, 20] clear comparisons could 

be made between previous tools and the tool from this thesis. However,performing 

well in this empirical study does not guarantee the efectiveness of this tool over 

all. After all, the set of numerical Java programs in this study is not very extensive. 

The largest fle is only 592 lines of code, which is pretty small when considering 

large software systems. Therefore, this empirical study can only ensure the tool’s 

functionality in small numerical programs. As for large Java programs, the results 

from this empirical study can only estimate that the tool would perform well in 

those cases as well. 

Furthermore, just to reiterate, this tool only has functionality for numerical Java 

variable types (int, long, short, byte, foat, and double). There is currently no func-

tionality for any other types of variables, like arrays, strings, objects, etc (i.e. non-

primitive types). Although numerical Java programs were handpicked to avoid 

non-primitive types, it is virtually impossible to fnd Java programs with decent 

complexity that do not contain at least some non-primitive types. Therefore, the 

presence of non-primitive types within some of the test programs is a threat to 

the validity of this study, because they are unaccounted for in the statistical fault 

localization calculations. 

Lastly, it was shown that this tool’s validity is highly dependent on the coinci-

dental correctness of a fault. Meaning, in order for CounterFault to correctly rank 

the faulty variable as a highly suspicious variable, there needs to exist a decent 

proportion of cases where the faulty variable does not result in a fault. In cases 
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where faults occur in nearly every test execution, CounterFault has trouble locat-

ing patterns between variable values and program faults, and thus the validity of 

this tool is challenged. 
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5 Conclusion 

In this thesis, previous fault localization studies that utilized causal inference 

techniques were analyzed and examined for faws. The primary faw that was fo-

cused on was the fact that the previous studies were inspired by Gated Single As-

signment (GSA) form, but lacked the ability to translate Java programs into true 

GSA form. Although the previous studies argued that their tools’ implementations 

resulted in the same outcome of pure GSA form, doubts were formed that ques-

tioned whether or not this were entirely true. Thus, in this thesis a new tool was 

introduced that can translate numerical Java programs into equivalent numerical 

Java programs that are in pure GSA form. By nearly replicating the empirical ex-

periments done in previous studies, the new tool was compared to the previous 

iterations, and it was found that the new tool greatly outperformed them when lo-

cating the faulty variables. To reiterate the results, the tool from this thesis was able 

to correctly rank the faulty variable as the most suspicious variable 57.5% of the 

time, whereas the previous tool was only able to correctly rank the faulty variable 

as the most suspicious variable 14.7% of the time. Also, even when the tool from 

this thesis did not suspect the faulty variable as the most suspicious variable, it 

still labeled it within the top 7% of suspicious variables 90.8% of the time; whereas 
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the previous tool only labeled the faulty variable within the top 7% of suspicious 

variables 35.3% of the time. This shows that the doubts raised by the "inspired" 

versions of GSA were valid, as the pure form of GSA clearly resulted in superior 

fault localization results. 
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6 Future Work 

6.1 Array SSA Form 

As mentioned earlier, along with implementing an "inspired" version of GSA form, 

Sheng’s tool also implemented an "inspired" version of Array SSA form [20]. How-

ever, for the tool from this thesis, a real version of Array SSA form should be im-

plemented, just like how a real version of GSA form was implemented. This would 

allow this tool to include arrays in the fault localization process. Meaning, the tool 

would be able to detect if an array assignment statement were the cause of a fault, 

and it would be able to add array variables to causal relationships for other vari-

ables; which would allow array variables to be adjusted for, to potentially eliminate 

confounding bias. 

Along with extending the tool to account forarray variables,othernon-primitive 

types should be added to the implementation as well (such as strings and class 

objects). String variables can follow generic GSA form, so those just need to be con-

sidered during the fault localization process. As for class object variables, Array 

SSA form can actually be extended to work for those types of variables [17]. Thus, 

by fguring out how to implement Array SSA form in a future iteration of this tool, it 
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would make the addition of object variables far less difcult, since object variables 

can be accounted for using an extension of Array SSA form. 

6.2 Java Project Functionality 

The tool introduced in this thesis only worked on individual Java programs. How-

ever, when dealing with real Java software systems, Java fles will often be used in 

cohesion with one another within a Java project. Thus, a future iteration of this 

tool should be developed that can translate an entire Java project into GSA form, 

and gather a causal map for all variables within the entire project. This would allow 

the tool to be testable on a larger scale, which could permit an empirical study on a 

real Java software system, or something comparable. For example, in [14], Küçük’s 

tool was tested on large Java projects included in the Defects4J library [5]. A future 

iteration of this tool can be used in a similar empirical study, but this time with a 

real GSA form implementation. 
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Appendix A 

GSA Source-to-Source Compiler Tutorial 

This appendix will explain how to install and run the tool implemented in this 

thesis. The detailed steps for installation are displayed below: 

(1) Clone the GitHub repository: https://github.com/otraben/GSACompiler 

[21]. 

(2) Open the repository in an Eclipse project [10]. Download Eclipse IDE if 

not already installed. 

(3) Locate the "Main.java" fle, which is in the directory: src/gsa. 

(4) Before running the "Main.java" fle: 

• Click Run -> Run Confgurations... 

• Click on Main 

• Click on the Arguments header 

• Under Program arguments,click on Variables... and add: "${fle_prompt}" 

(5) Run the "Main.java" fle under the run confguration that was just made. A 

window will open up to select an input program. Traverse to the directory: 

src/tests. Select any desired fle to be translated into GSA form. 

• If you would like to add your own test program to the project, make 

sure to insert it into the src/tests directory. 

(6) An output directory will be created for the test program: src/outputs/[name 

of test program]_Output. 

(7) The output directory will contain the following fles: 

https://github.com/otraben/GSACompiler
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(a) [name of test program].java: Original test Java program translated 

into GSA form. 

(b) [name of test program]_Faulty.java: Original test Java program trans-

lated into GSA form, but the class name, constructor names, and class 

object declarations all have "_Faulty" appended to the end of them. 

This fle is used to have faults manually inserted into it. 

(c) [name of test program]Map.txt: Causal map for all of the variables in 

the test program. 

(d) FaultLocalizationTester.java: File used to run the non-faulty and 

faulty Java programs, and produce all of the necessary fles for fault 

localization calculations. 

(e) [name of test program].R: An R fle that will create a table of all GSA 

variables and their corresponding confounding variables (i.e. all of 

the variables from the causal map). 

(f) RFCIcode.R: An R fle that contains the implementation of Counter-

Fault. 

(8) Next, the non-faulty and faulty Java fles need to be modifed to include 

"record-output" statements at the location of where the developer desires 

outputs to be recorded. For example, let’s say the developer wants the out-

put of the program to be a variable X that is returned at the end of a func-

tion F (). For the non-faulty fle, the following line would need to be manu-

ally inserted above the return statement: Output.recordProgramOutput("[name 

of test program]", X, false);. Whereas for the faulty fle, the following line 



61 

would need to be manually inserted above the return statement: Out-

put.recordProgramOutput("[name of test program]", X, true);. The true 

and false values simply inform the function whether it is being called on 

from the faulty or non-faulty program, respectively. 

(9) Next, a fault needs to be inserted into the faulty program. Where you de-

cide to insert a fault is up to you, but in order for it to work with Counter-

Fault, it must be on a numerical assignment statement. You can utilize the 

"Fluky.java" functions that exist within the repository to create faults, or 

you can create faults in your own way. 

(10) Movingon,the"FaultLocalizationTester.java"fleneeds tobe—potentially— 

modifed before running all of the test executions. By default, the fle runs 

the main function for the faulty and non-faulty fles, but if you are inter-

ested in a diferent method, modify the code to call on that method instead 

for both the faulty and non-faulty programs. 

(11) Now, the "FaultLocalizationTester.java" can fnally be run. 

(12) Once all of the test executions complete, the output directory will be up-

dated to contain the following additional fles: 

(a) output.txt: This is the fle that is written to during all run-time execu-

tions. All variable-value assignments are printed into this fle, as well 

as all output recordings. 

(b) newoutput.txt: This fle is created using the "output.txt" fle. It essen-

tially takes all of the variable-value assignments and formats them 

into a table that maps each variable to their corresponding values for 

each test execution. 



62 

(c) outY.txt: This fle is created using the "output.txt" fle. It compares 

the output from the non-faulty version and compares it with every 

output from the faulty version. Using these comparisons, either a 1 

(which implies a fail) or a 0 (which implies a pass) is appended to the 

fle. Thus, the fle contains an outcome result for each test execution. 

(13) Next, open up an R environment and run the [name of test program].R fle 

to create the causal adjustment table. 

(14) Then, run the RFCIcode.R in the same R environment. It will utilize the 

"newoutput.txt" fle and the "outY.txt" fle within it’s calculations. 

(15) This will result in a CSV fle called: result_secMin_2_p0.75_100tests.csv. 

This fle will include the suspiciousness scores of all GSA variables from 

the test program in decreasing order. 
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