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Abstract

Multinomial Naive Bayes with Expectation Maximization
(MNB-EM) is a standard semi-supervised learning method
to augment Multinomial Naive Bayes (MNB) for text clas-
sification. Despite its success, MNB-EM is not stable, and
may succeed or fail to improve MNB. We believe that this
is because MNB-EM lacks the ability to preserve the class
distribution on words.
In this paper, we propose a novel method to augment MNB-
EM by leveraging the word-level statistical constraint to pre-
serve the class distribution on words. The word-level sta-
tistical constraints are further converted to constraints on
document posteriors generated by MNB-EM. Experiments
demonstrate that our method can consistently improve MNB-
EM, and outperforms state-of-art baselines remarkably.

Introduction

Multinomial Naive Bayes(MNB) has been widely used in
text classification. MNB adopts a Bayesian learning princi-
ple, which assumes that word distributions in documents are
generated by a specific parametric model. And the parame-
ters can be learned by maximizing the likelihood of labeled
data, i.e. max

θ

∑
d∈L logP (c, d) where c, d, and L indicate

class, document, and labeled data respectively.
Since labeled data is usually scarce, but large scale un-

labeled data is readily available, it’s desirable to augment
MNB to learn from both labeled data and unlabeled data. To
this end, numerous semi-supervised learning methods have
been proposed, and Multinomial Naive Bayes with Expec-
tation Maximization(MNB-EM)(Nigam et al. 2000) is per-
haps the most popular one. MNB-EM maximizes the like-
lihood of labeled data, and the marginal likelihood of un-
labeled data, i.e. max

θ

∑
d∈L logP (c, d) +

∑
d∈U logP (d)

where U indicates unlabeled data.
Despite the success of MNB-EM, it is not stable, and may

increase or decrease the prediction performance of MNB,
as reported in the literature(Chawla and Karakoulas 2005).
We believe that this is because MNB-EM lacks the ability to
preserve the class distribution on words.

To be specific, let us consider the word “loves” in a sen-
timent classification task, where each document is classi-
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fied as either positive or negative. Let N+
loves represent how

many times “loves” occurs in positive documents, N−
loves for

negative documents. p+loves represents the probability that
word “loves” appears in positive documents, and can be es-
timated by N+

loves/(N
+
loves+N−

loves). In general, we use pcw
to represent the class distribution on word.

As shown in Table 1, we can get an estimation of p+loves
based on word statistics on labeled documents. Since MNB-
EM assign a posterior P (+|d) for each unlabeled document
d, we can calculate word statistics N+

w on unlabeled data
approximately by

∑
d Nd,w×P (+|d), where Nd,w represent

how many times word w appears in document d. Thus we
can get another estimation of p+loves based on unlabeled data
and MNB-EM.

N+
loves N−

loves p+loves
labeled data 18 2 0.9

unlabeled data with 266.1 296.9 0.402posteriors by MNB-EM

Table 1: MNB-EM can’t preserve the polarity(/class) infor-
mation on word “loves”. We sample 512 documents as la-
beled data from dataset “kitchen”, and use MNB-EM to gen-
erate posteriors for the unlabeled data.

From the above table, we can see that we have fairly
enough observations for word “loves” on labeled data, to
ensure that it bears positive polarity. However, the objec-
tive function of MNB-EM includes the marginal likelihood
(P (d)) for unlabeled data, which may cause MNB-EM to
make prediction such that the polarity(/class) distribution on
word “loves” is not maintained. This is obviously unreason-
able. We believe that forcing MNB-EM to preserve the class
distribution on words may guide the learning process and
lead to better classification performance.

However, we don’t want MNB-EM to preserve class dis-
tribution on words strictly all the time, because sometimes
we may obtain a quite unstable estimation of p+w due to a
limited number of labeled data. Consider the following case
for word “worthless” in Table 2. We know “worthless” is
a strong indicator for negative polarity. However, we have
limited observations for this word, and it happened to occur
more in positive documents on labeled data. This estimation
of p+worthless is unreliable, and we don’t want to let this in-
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formation mislead the learning process.

N+
worthless

N−
worthless

p+
worthless

labeled data 2 1 0.66
unlabeled data

7.26 15.74 0.316with posteriors
by MNB-EM

Table 2: We don’t want to preserve the class information
on word “worthless” because it’s unreliable. We sample 512
documents as labeled data from dataset “kitchen”, and use
MNB-EM to generate posteriors for the unlabeled data.

In order to preserve the class distribution on words in a
robust, reasonable way, we propose to use the interval es-
timation of pcw on labeled data, to bound the point estima-
tion of pcw on unlabeled data. Thus our model can automat-
ically generate tighter bounds for more frequent words, and
looser bounds for less frequent words. Those word-level sta-
tistical constraints are further converted into constraints on
document posteriors, and are injected into MNB-EM under
the framework of Posterior Regularization(PR)(Graca et al.
2007).

Our contributions are listed as follows:
• We propose a novel semi-supervised model, Multi-

nomial Naive Bayes with Word-level Statistical
Constraint(MNB-WSC) to augment MNB-EM by
preserving class distribution on words.

• We propose a novel idea to preserve the class distribution
on words robustly : using the interval estimation of pcw
on labeled data, to bound the point estimation of pcw on
unlabeled data.

• Experiments demonstrate that our model outperforms
baselines remarkably.
The rest of this paper is organized as follows. We intro-

duce the problem definition in Section 2. MNB and MNB-
EM is summarized in Section 3. In Section 4, we introduce
our word-level statistical constraint. We present our MNB-
WSC model in Section 5. We present experiment results in
Section 6. In Section 7, we survey related work. We summa-
rize our work in Section 8.

Problem Definition
We focus on a semi-supervised text classification task,
which aims at assigning a correct class label c for each doc-
ument d. We adopt the bag-of-words representation for doc-
uments. The set of unique words w appearing in the whole
document collection is called vocabulary V. The set of class
label c is the output space C.

Let Nd,w represents how many times word w appears
in document d. Thus document d can be represented by d
={Nd,w1 , Nd,w2 ,..., Nd,w|V |}.

We assume the following inputs:
• A set of labeled documents L = {(di, c)|i = 1, ..., |L|},

drawn i.i.d from a distribution P (d, c) .
• A large set of unlabeled documents U = {di|i = |L| +
1, ..., |L|+|U |}, drawn i.i.d from the marginal distribution
P (d) =

∑
c P (d, c) .

Additionally, we have Nw represents how many times
word w appears in labeled data. (Nw)u represents how many
times word w appears in unlabeled data. N c

w represents how
many times word w appears in documents that belong to
class c on labeled data. Nd,w, Nw, (Nw)u and N c

w are im-
portant word statistics used in our word-level statistical con-
straint.

MNB and MNB-EM

Multinomial Naive Bayes (MNB) addresses the task of text
classification from a Bayesian principle. MNB makes a sim-
ple assumption that word occurrences are conditionally in-
dependent of each other given the class of the document.

P (c|d) = P (c)
∏|V |

i=1 P (wi|c)Nd,wi

P (d)
(1)

MNB estimates the parameters θ = {P (wi|c), P (c)} by
maximizing the joint log likelihood of labeled data.

max
θ

∑

d∈L
logP (c, d) (2)

In order to leverage both labeled data and unlabeled data,
MNB-EM tries to maximize both joint likelihood of labeled
data, and marginal likelihood of unlabeled data as shown in
Eq.3

max
θ

∑

d∈L
logP (c, d) +

∑

d∈U
logP (d) (3)

From the above equations, we have the following obser-
vations: 1. MNB and MNB-EM only leverages label in-
formation from the perspective of documents, i.e. P (c|d),
P (c, d), P (d). 2. MNB-EM combine labeled data and un-
labeled data, by maximizing the sum of joint likelihood of
labeled data and marginal likelihood of unlabeled data to get
a point estimation for parameter.

The difference between our model and MNB-EM is two-
fold: First, we introduce word class distribution pcw to lever-
age label information from the perspective of words. Sec-
ond, we combine labeled data and unlabeled data, by using
the interval estimation of pcw generated from labeled data, to
bound the point estimation of pcw generated from unlabeled
data.

Word-level Statistical Constraint

In this section, we present our data-driven constraint model.
First, we present constraint based on word class distribution
pcw, which captures how likely word w is occurring in a doc-
ument that belongs to class c. Then, we show how to convert
this constraint into document posterior constraint.

Word-level Statistical Constraint

Let us consider a certain word w. In a labeled dataset, w may
occur in several documents for several times. For each time,
the document that w occurs in could belongs to any class.
So each occurrence of w can be seen as a trial, where the
document that w occurs in belongs to class c with probabil-
ity pcw. We introduce a random variable Xw to denote the
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class of the document that contains w. We adopt the 1-of-k
representation here for Xw as follow,

Xw = (X1
w, X

2
w, ..., X

k
w) (4)

where Xi
w ∈ {0, 1},

∑k
i=1 X

i
w = 1. Xc

w = 1 means that
the document contains w belongs to class c. Obviously, the
class of document that w occurs in for each time follows
multinomial distribution.

Pr(Xw) =
∏

c

pcw
Xc

w (5)

Or in short,
Xw ∼ Multinomial( �pw) (6)

Given labeled data, we can estimate parameter pcw. The Max-
imum Likelihood Estimation(MLE) of pcw based on labeled
data is

(pcw)l =
Nc

w∑
i N

i
w

(7)

However, for large and sparse feature spaces common in set-
tings like text classification, many words/features occur in
only a small fraction of examples, which leads to noisy and
unreliable estimation of parameter pcw.

If we estimate the parameter pcw on the classification re-
sult of MNB-EM on unlabeled data, we will get another es-
timation result (pcw)u, as shown in Eq.8. It’s very likely that
(pcw)u is different from (pcw)l. Since (pcw)l is noisy and un-
reliable for most features, it’s OK for (pcw)u being different
from (pcw)l. But the real question here, is how much could
(pcw)u be different from (pcw)l?

(pcw)u =

∑
d∈U Nd,w × P (c|d)∑

d∈U Nd,w
(8)

Although labeled data can’t give us a reliable point estima-
tion (pcw)l, it can still give us a reliable interval estimation.
We can conduct interval parameter estimation for pcw with
limited observations, and thus get a confidence interval(CI)
for pcw. We are confident that pcw is in the confidence inter-
val. If (pcw)u, the parameter learned by MNB-EM, is a good
estimation, we are confident that (pcw)u should be in that
confidence interval, too. Because Wilson interval has good
properties even for a small number of trials and an extreme
probability,, we use Wilson interval to calculate the confi-
dence interval for pcw here, as follows,

CI =
(pc

w)l +
z2
α/2

2Nw
± zα/2

√
[(pc

w)l(1 − (pc
w)l) + z2

α/2
/4Nw]/Nw

(1 + z2
α/2

/Nw)

(9)

where we look for z-table to find zα/2 corresponding to
a certain confidence level(1 − α). By leveraging inter-
val estimation, we can give tighter bound for more fre-
quent words, and looser bound for less frequent words.
As shown in Table 3, we can apply interval estimation for
word “loves” and “worthless”. Word “worthless” has in-
terval [0.2076, 0.9385], which is a loose bound and allows
the probability that “worthless” may indicate negative senti-
ment. We can also find that frequent words(such as “loves”)
have tighter bound.

N+
w N−

w CI(p+w)
“loves” 18 2 [0.6990,0.9721]

“worthless” 2 1 [0.2076,0.9385]

Table 3: Interval estimation for word “loves” and “worth-
less” on labeled data. Confidence interval(CI) is calculated
at confidence level 95%.

Document Posterior Constraint

Up to now, we already get a confidence interval
[lower(pcw), upper(p

c
w)] for pcw. We can apply this con-

straint on (pcw)u.
lower(pcw) ≤ (pcw)u ≤ upper(pcw) (10)

Substituting equation 8 into equation 10, we have
lower(p

c
w)×(Nw)u ≤

∑
d∈U

Nd,w×P (c|d) ≤ upper(p
c
w)×(Nw)u (11)

Thus, we convert the constraint on word-statistics into con-
straint on document posteriors. Our constraints are data-
driven constraints, which combine labeled information on
word-level from labeled data, and large-scale unlabeled data.
For each word w, we have above constraint on all the docu-
ments that contain w. Although for certain w, the constraint
could be very loose. Since we have thousands of words in
total, these constraints can still play an important role in the
learning process.

Multinomial Naive Bayes with Word-level

Statistical Constraint

In this section, we present our probabilistic model,
Multinomial Naive Bayes with Word-level Statistical
Constraint(MNB-WSC), which combines MNB-EM with
our word-level statistical constraint. Since our word-level
constraints can be converted to constraints on document pos-
teriors, we formulate our problem in the framework of Pos-
terior Regularization (PR)(Graca et al. 2007).

PR is an efficient framework to inject constraints on the
posteriors of latent variables. In this work, we apply PR
in the context of MNB-EM for text classification. As men-
tioned above, MNB-EM attempts to maximize the following
objective function.

logLθ(D) =
∑

d∈L
logP (c, d) +

∑

d∈U
logP (d) (12)

PR makes the assumption that the labeled data we have is not
enough for learning good model parameters, but we have a
set of constraints on the posterior distribution of the labels.
In our case, we can define the set of desirable posterior dis-
tributions Q according to Eq. 11 as

Q = {q(c|d)|
∑
d∈U

Nd,w × q(c|d) ≤ upper(p
c
w) × (Nw)u,

∑
d∈U

Nd,w × q(c|d) ≥ lower(p
c
w) × (Nw)u}

(13)

Instead of restricting pθ directly, which might not be feasi-
ble, PR penalizes the distance of pθ to the constraint set Q.
The posterior-regularized objective is termed as follows:

max
θ

{logLθ(D)−min
q∈Q

KL(q(C|D)||pθ(C|D))} (14)
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By trading off the objective function of MNB-EM (as de-
fined in the first term), and the KL divergence of the posteri-
ors to the valid posterior subspace defined by constraint (as
defined in the second term), the objective encourages models
with both desired posterior distribution and data likelihood.
In essence, the model attempts to maximize objective func-
tion of MNB-EM subject (softly) to the constraints.

The objective can be optimized by an EM-like scheme
that iteratively solves the minimization problem and the
maximization problem. This algorithm can be easily imple-
mented as described in(Graca et al. 2007), so we omit it here.

Experiment

Data Sets and Evaluation Metrics

We evaluate on two text classification tasks: topic classifica-
tion and sentiment classification.

Dataset For topic classification, we use 4 multi-class
datasets. “Ohscal” is a dataset of medical documents in
WEKA1. “Reuters”(Rose, Stevenson, and Whitehead 2002)
is a collection of news articles organized into topics, and we
use the 8 most frequent topics here2. WebKB(Craven et al.
1998) consists of 4,199 university webpages of four types:
course, faculty, project and student3. 20 Newsgroups(Lang
1995) is a set of 18,828 Usenet messages from 20 dif-
ferent online discussion groups 4. For sentiment classifica-
tion, we use 4 domains from the Multi-Domain Sentiment
Dataset5(Blitzer, Dredze, and Pereira 2007). Table 4 pro-
vides a brief description of each dataset.

All datasets have been widely used in previous studies,
and are publicly available. “Ohscal” is already preprocessed
by the original authors. We preprocess other datasets for
topic classification in a similar way as (Su, Shirab, and
Matwin 2011), converting to lower case characters, and
then applying tokenization, stemming, and punctuation and
stop word removal. We preprocess Multi-Domain Sentiment
Dataset in a similiar way as (Lucas and Downey 2013), since
punctuation could indicate strong sentiment.

Dataset #Class #Instance Positive(%) |V |
Ohscal 10 11,162 - 11,466
Reuters 8 7,674 - 17,387
WebKB 4 4,199 - 7,770
20News 20 18,828 - 24,122
Kitchen 2 19,856 79.25 10,442

Electronics 2 23,009 78.06 12,299
Toys&Games 2 13,147 80.46 8,448

Dvd 2 124,438 85.87 56,713

Table 4: Data Description.

1Available at http://www.cs.waikato.ac.nz/ml/weka/
2Available at http://www.daviddlewis.com/resources/

testcollections/reuters21578/
3Available at http://www.cs.cmu.edu/ WebKB/
4Available at http://qwone.com/ jason/20Newsgroups/
5Available at http://www.cs.jhu.edu/ mdredze/datasets/

sentiment/

Evaluation Metrics

We use Macro-F1 to evaluate both topic classification and
sentiment classification.

Baselines and Settings

We compare our methods with several state-of-art base-
lines. Below, we detail the comparison methods that we re-
implemented for our experiments.

MNB Classical Multinomial Naive Bayes classifier that
only uses labeled data, “add-1” smoothing is employed here.

MNB-EM Multinomial Naive Bayes with Expectation
Maximization(Nigam et al. 2000). We find that 15 iterations
of EM is sufficient to ensure approximate convergence to
obtain reliable parameters. The weight of an unlabeled ex-
ample is set to be 1/5 the weight of a labeled example.

SFE Semi-supervised Frequency Estimate(Su, Shirab,
and Matwin 2011). SFE use equality P (+|w) =
Pl(+, w)/Pu(w) to estimate parameters. “Add-1” smooth-
ing is also used in SFE.

MNB-FM MNB with Feature Marginals (Lucas and
Downey 2013). MNB-FM use feature marginals as con-
straints to estimate parameters for binary text classification.

Our method shares the same settings with MNB-EM. The
confidence level is set to be 80% for all dataset.

Classification Performance

We experiment with different sizes of labeled set by setting
|Tl| = {64, 128, 256, 512}. For each data set and each size,
we repeat experiments 50 times, and each time randomly
sample labeled data for training and testing. Each time, we
ensure that there is at least one document for each class.

The primary results of our experiments are shown in Ta-
ble 5-6. We use one-tailed t-tests with a 95% confidence in-
terval, to judge whether a method is significantly worse or
better than MNB-WSC.

We can see that MNB-WSC can improve MNB-EM con-
sistently, and outperforms other state-of-art methods for
most cases. Additionally, we discuss the experiment results
from the following three perspectives: improvement against
MNB-EM, the effect of labeled data size, and performance
under imbalanced class distribution.

Improvement against MNB-EM MNB-WSC can consis-
tently improve MNB-EM on all datasets. This is not surpris-
ing, since our method aims at solving the issues existing in
MNB-EM.

The improvement of MNB-WSC is affected by two fac-
tors: 1. How many meaningful constraints we can generate
from labeled data. 2. How bad MNB-EM is in terms of pre-
serving word polarity. With more labeled data, and worse
performance of MNB-EM, our method can give more im-
provement.
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Impact of Labeled Data Size We want to compare differ-
ent methods, to see how the performance changes with the
growth of labeled data size. Let us consider the performance

Figure 1: Impact of labeled data size. Macro-F1 on data
“Ohscal”, at |Tl| = {64, 128, 256, 512}.

of different methods on dataset “Ohscal”, as shown in Fig.1.
We find that: 1. MNB-EM and MNB-WSC perform espe-
cially well when labeled data size is small. 2. MNB-WSC
grows faster than MNB-EM, since with more labeled data,
we can generate more reliable constraints to guide the learn-
ing process.

number of labeled documents Tl = 64

dataset MNB MNB-EM SFE MNB-WSC
Ohscal 0.4644• 0.5353 0.4591• 0.5417
Reuters 0.4824• 0.4905 0.5330 0.5359
WebKB 0.6589• 0.6674 0.6911 0.6945
20News 0.3177• 0.4242 0.3204• 0.4429

number of labeled documents Tl = 128

dataset MNB MNB-EM SFE MNB-WSC
Ohscal 0.5456• 0.5878 0.5435• 0.6022
Reuters 0.5843• 0.5938 0.6102 0.6291
WebKB 0.7157• 0.7250 0.7332 0.7439
20News 0.4115• 0.5322 0.4302• 0.5327

number of labeled documents Tl = 256

dataset MNB MNB-EM SFE MNB-WSC
Ohscal 0.5955• 0.6166• 0.5956• 0.6418
Reuters 0.6789 0.6826 0.6862 0.7054
WebKB 0.7526 0.7425 0.7637 0.7677
20News 0.5161• 0.6175 0.5443• 0.6215

number of labeled documents Tl = 512

dataset MNB MNB-EM SFE MNB-WSC
Ohscal 0.6420• 0.6404• 0.6399• 0.6736
Reuters 0.7647 0.7714 0.7656 0.7723
WebKB 0.7768 0.7641 0.7844 0.7839
20News 0.6235• 0.7019 0.6395• 0.7049

Table 5: Comparison of Macro-F1 for Topic Classification.
• worse, or ◦ better, comparing to MNB-WSC

Performance under Imbalanced Class Distribution
From Table 6, we can see MNB-WSC outperforms all meth-
ods on all datasets under imbalanced class distribution.

This is because that our method has the potential ability
to preserve class distribution on unlabeled data, while other
methods are likely to classify all instances as the largest
class. Since our method can preserve the class distribution
on words, and many frequent words appear in most doc-
uments. Constraints on those words can preserve the class
distribution of unlabeled data.

number of labeled documents Tl = 64

dataset MNB MNB-EM SFE MNB-FM MNB-WSC
Kitc. 0.5960• 0.5759• 0.6185 0.6040 0.6417
Elec. 0.5905• 0.5606• 0.6129 0.6099 0.6374
T&G 0.5907• 0.5225• 0.6182 0.6135 0.6446
Dvd 0.5329 0.4827• 0.5482 0.5135 0.5546

number of labeled documents Tl = 128

dataset MNB MNB-EM SFE MNB-FM MNB-WSC
Kitc. 0.6185• 0.5940• 0.6405 0.6308 0.6681
Elec. 0.6117• 0.5829• 0.6346 0.6231• 0.6627
T&G 0.6217• 0.5897• 0.6473• 0.6330• 0.6844
Dvd 0.5259• 0.4880• 0.5607 0.5193• 0.5714

number of labeled documents Tl = 256

dataset MNB MNB-EM SFE MNB-FM MNB-WSC
Kitc. 0.6431• 0.6001• 0.6639• 0.6528• 0.6955
Elec. 0.6412• 0.5859• 0.6602• 0.6498• 0.6947
T&G 0.6618• 0.6766 0.6726• 0.6533• 0.7156
Dvd 0.5518 0.4937• 0.5787 0.5413• 0.5796

number of labeled documents Tl = 512

dataset MNB MNB-EM SFE MNB-FM MNB-WSC
Kitc. 0.6777• 0.6158• 0.6904• 0.6787• 0.7182
Elec. 0.6798• 0.5989• 0.6918• 0.6841• 0.7212
T&G 0.6856• 0.7036• 0.6940• 0.6817• 0.7340
Dvd 0.5694• 0.5050• 0.6009 0.5554• 0.6172

Table 6: Comparison of Macro-F1 for Sentiment Classifica-
tion. • worse, or ◦ better, comparing to MNB-WSC

Estimation of Word Class Distribution

In this section, we want to evaluate how different learning
methods learn good estimation of word class distribution.
We test on “Kitchen” by setting |Tl| = 64. Table 7 shows
how word class distribution is preserved by MNB-WSC,
compared to MNB-EM. We estimate word class distribu-
tion p+w , p

−
w on the classification result of MNB, MNB-EM,

and MNB-WSC respectively. Then, we compute the KL-
divergence of the above distribution from the true distribu-
tion over the entire data set. The average reduction of KL-
divergence against MNB and MNB-EM is calculated with
respect to words with different probability and Unknown,
Half-Known, Known words. Known indicates words occur-
ring in both positive and negative training examples, Half
Known indicates words occurring in only positive or nega-
tive training examples, while Unknown indicates words that
never occur in labeled examples. The KL-divergence from
the true distribution for MNB-WSC is smaller than the es-
timated distribution for MNB and MNB-EM on average.
Since MNB does not have word class distribution drift is-
sue, our model is not strictly better than MNB on word class
distribution estimation. The overall improvement can only
imply that our model can classify documents more correctly.

Impact of Parameter

We vary the confidence level(CL) from 70% to 95% to see
how it impacts on the performance of MNB-WSC. We test
on “Ohscal” by setting |Tl| = 512. The results are presented
in Fig. 2 . We can see that the performance is fairly stable
when changing the confidence level, which implies the ro-
bustness of our model. The robustness partially comes from
that, we apply constraints softly, instead of hardly, on the
objective function.

Related Work

Semi-supervised text classification is an active research
area. However, most existing works leverages both la-
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Avg Improvement v.s. MNB Avg Improvement v.s. MNB-EM Probability Mass
Word Prop. Known Half-Known Unknown Known Half-Known Unknown Known Half-Known Unknown
0-10−6 - -0.0658 -0.0607 - 0.1339 0.2206 - 0.02% 2.11%

10−6-10−5 0.1919 0.0162 -0.0753 0.0210 0.1474 0.1795 0.03% 1.30% 15.92%
10−5-10−4 0.0427 0.0686 0.0289 0.0902 0.0867 0.0926 2.92% 16.45% 23.25%
10−4-10−3 0.0579 0.0695 -0.0123 0.0449 0.0618 0.3101 20.67% 12.81% 1.09%
> 10−3 - - - - - - - - -

Table 7: Analysis of {p+w ,p−w} estimation improvement of MNB-WSC over MNB and MNB-EM(Dataset “Kitchen”, |Tl| =
{64}). Known indicates words occurring in both positive and negative training examples, Half Known indicates words occurring
in only positive or negative training examples, while Unknown indicates words that never occur in labeled examples.

Figure 2: Impact of confidence level. Macro-F1 on dataset
“Ohscal” at |Tl| = 512.

beled data and unlabeled data from the perspective of
documents. Current popular Semi-Supervised Learning ap-
proaches include using Expectation-Maximization on prob-
abilistic models (Nigam et al. 2000); Transductive Support
Vector Machines (Joachims 1999); and graph-based meth-
ods(Zhu and Ghahramani 2002)(Lin and Cohen 2011)(Liu,
He, and Chang 2010)(Subramanya and Bilmes 2009). Com-
pared with these works, our model can also leverages labeled
data from the perspective of words.

Another line of works focus on unsupervised text clas-
sification by leveraging “labeled feature”. Labeled feature
refers to the feature that is a strong indicator of certain
class. For example, in a baseball vs. hockey text classifica-
tion problem, even without any labeled data, we know that
the presence of the word puck is a strong indicator of hockey.
Labeled feature is human-provided domain knowledge. Sev-
eral works have explored labeled feature by Generalized
Expectation Criteria(GEC) (Mann and McCallum 2007),
by Non-negative Matrix Tri-factorization(NMF)(Li, Zhang,
and Sindhwani 2009), by document-word co-regularization
on bipartite graph(Sindhwani and Melville 2008), by com-
bining both labeled feature and labeled document(Melville,
Gryc, and Lawrence 2009).

Our work is similar to works on labeled feature in terms
of both leveraging the labeled information from the perspec-
tive of words. The key difference here is two-fold:1. Labeled
feature is human-provided knowledge, while our word-level
statistic constraint is data-driven constraint generated from
labeled data. 2. Works on labeled feature only leverage those

features that are strong indicators of certain class, while our
model can leverage all words by providing an general con-
straint paradigm.

Our work is also related to general constraint-driven (or
knowledge-driven) learning models, including Constraint-
driven learning(Chang, Ratinov, and Roth 2007), Posterior
regularization (Graca et al. 2007), Generalized expectation
criteria (Druck 2011) and Measurements(Liang, Jordan, and
Klein 2009).

The most similar two works are (Su, Shirab, and Matwin
2011) and (Lucas and Downey 2013) in terms of augment-
ing MNB in a semi-supervised manner. SFE(Su, Shirab, and
Matwin 2011) re-estimates parameters by leveraging word
posteriors from labeled data and word frequency from un-
labeled data. MNB-FM attempts to improve MNB’s esti-
mation using word statistics from unlabeled data. However,
we find that SFE leverages all word posteriors directly, in-
cluding those are unreliable due to limited observations.
And MNB-FM is limited to binary classification. While our
model can leverage class information on words robustly to
solve multi-class text classification problem.

To the best of our knowledge, MNB-WSC is the first ap-
proach that leverages labeled data from the perspective of
words and generate reasonable, intuitive constraints for both
frequent and less frequent words based on word statistics to
improve a semi-supervised classifier.

Conclusion

In this paper, we propose a novel semi-supervised learn-
ing method to augment MNB-EM by leveraging the word-
level statistical constraint to preserve the class distribution
on words. Experiments show that our method can consis-
tently improve the performance of MNB-EM, and outper-
forms state-of-art baselines. We also show that out methods
can produce more accurate estimation of word class distri-
bution.

We also propose a novel idea to combine information
from two views, in our case, labeled data and unlabeled
data. Traditional methods usually adopt an objective func-
tion that is the sum of the objective function from each view.
We propose to use interval estimation of certain parameter
from one view(in our case, labeled data), to bound the point
estimation of the parameter from another view(in our case,
unlabeled document posteriors provided by MNB-EM). We
believe this idea is interesting and intuitive, and has poten-
tial impact on many learning problems. We will try to apply
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this idea to other learning problems in our future work.
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